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Measurements of the correlators K;(r)={(Au,(Ag,)?) and K,(r)=(Au,(Aq,)?) for separations r within
the inertial range are executed in a large wind tunnel and in the atmospheric surface layer at R, ~(2.0—
12.7)X 10°. Here u, g, and & denote longitudinal velocity, turbulent kinetic energy, and dissipation rate,

respectively,

and A¢,=p(x)— ¢(x+r),

b=u,q,8.

It is found that the correlators behave as

K (r)=—c 0,{(e)? and K,(r)=—c,0r/A where o, is the rms value of the longitudinal velocity, and A is
the external turbulence scale. The constants ¢; and c, are found to be independent of both R, and the flow
geometry which agrees with the Yakhot theoretical prediction [Phys. Rev. E 50, R20 (1994)].

PACS number(s): 47.27.—i

An adequate description of the small-scale structure of
fully developed turbulence still remains a challenging prob-
lem in fluid dynamics. In addition to numerous existing mod-
els (for review and classification see She [1]), new phenom-
enological models continuously appear in the literature.
Recently, Yakhot [2] suggested a model which conceptually
differs from the rest. He assumed that the velocity u, kinetic
energy q=3uu;, and dissipation rate &=wv(du;/ ox;
+du;/ dx;)? are independent dynamical variables. Here u;,
u=1,2,3, are velocity fluctuation components in the direc-
tions x;, and v is the kinematic viscosity. Yakhot then ap-
plied dimensional arguments, not to the fluctuations of ¢ and
€, but to their fluxes, which is a straightforward generaliza-
tion of the Kolmogorov [3,4] ideas. He found that at very
high Reynolds numbers the correlators

K, (r)=(Au,(Aq,)?),

which describe fluxes of £2 and g2, respectively, behave in
the inertial range as

Kl(r)=<Aur(A8r)2>>

Ki(r)==cio,(e)%,

,
Ky(r)=—co05 5 (1)

n<r<A.

Here o, is the rms value of longitudinal velocity, %
and A denote the Kolmogorov and the external turbulence
scales, respectively, c¢; and ¢, are constants, Ad¢p,
=¢(x1)— P(x1+r), $=uy,q,e, and angular brackets de-
note averaging over x .

In accordance with the Yakhot [2] considerations, ¢; and
¢, should not depend on Reynolds number. Note that gov-
erning parameters in Eq. (1) are chosen to be the large-scale
characteristics o, and (&). Such a choice agrees with the
general concept of cascade models which consider the dissi-
pation scale not to be a governing parameter in the inertial
range. Some results on K;(r) from a numerical experiment
were presented by Borue and Orszag [5]. Our paper reports
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an experimental study of correlators K;(r) and K,(r) in the
atmospheric surface layer and in a large wind tunnel at very
high Reynolds numbers.

Measurements in the atmospheric surface layer were
taken over a nearly homogeneous field near Carpenter, Wyo-
ming (Oncley [6]). The instantaneous horizontal component
of the wind velocity was measured from a tower at 7 m
above ground level. After preliminary processing, six time
series have been chosen from the total record (Praskovsky
and Oncley [7]). Four of these series are analyzed in the
present work. The second experiment was executed in the
large wind tunnel of the Central Aerohydrodynamic Institute
(Moscow, Russia). Longitudinal and lateral velocity compo-
nents were recorded in the mixing layer and in the return
channel of the wind tunnel (Praskovsky et al. [8]).

The main flow characteristics of the measurements are
listed in Table 1. The abbreviations ML, RC, and ASL denote
the mixing layer, return channel, and atmospheric surface
layer, respectively, and numerals after ASL correspond to the
sequence of the time series (in accordance with that in [7]).
When their meaning is clear, the notations u#=u; and
x=x; are used throughout the paper. U is the mean longitu-
dinal velocity, o4 denotes the rms value of any quantity ¢.
The longitudinal integral scale L, the Taylor A and Kolmog-
orov 7 microscales, and the Reynolds number R, , are de-
fined with standard formulas: L;=o0, 2f olu(x)u(x
+r))dx, N\=0,/050, n=/{e)V*, and Ry=0c,\/v
where it is assumed that (&)=15»((Ju/dx)?). Other quanti-
ties in Table I will be defined later. Taylor’s hypothesis was
used to convert from temporal to spatial coordinates.

Two surrogates for the instantaneous values of the dissi-
pation rate & were used, namely &;=15v(du;/dx,)? and
£,=7.5v[(du;/dx,)*+0.5(duy/dx,)?]. As was mentioned
above, only u;(x;) is available in the atmospheric measure-
ments while both u(x;) and u,(x;) were simultaneously
recorded in the wind tunnel. Thus K;(r) was estimated by
using £, for the atmospheric data, and by using both £; and
£, for the wind tunnel data. Results are presented in Fig. 1 in
a nondimensional form

Ki(r)

Fi{(r)y=———.
1( ) o_u< 8)2
One can see that the scatter of the experimental results is
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TABLE 1. Main characteristics of analyzed time series.

Time series ML RC ASL2 ASL3 ASLS5 ASL6

U (m/s) 7.87 10.8 6.58 8.10 12.9 145

o, (m/s) 1.67 1.03 0.693 1.10 1.82 2.08

L, (m) 1.3 4.8 42 51 99 77

(e) (m?/s*) 1.90 0.115 0.0235 0.0322 0.140 0.128

A (cm) 1.8 4.6 6.5 9.0 7.0 8.3

1073R, 2.0 3.2 33 6.9 9.2 12.7

7 (mm) 0.21 0.41 0.58 0.55 0.37 0.37

LRy 0.069 0.065 0.38 0.16 0.30 0.15

IR1 (r/7) 20-4000 207000 20-2000 20-2000 20-4000 20-6000

ci1* oy 2.62+0.48 2.72+0.39 2.90+0.42 2.42+0.28 1.98+0.24 2.28+0.43

IR2 (r/7) 20-200 20-4000 20-300 20-1000 20-2000 20-20000

crt o, 8.37+0.73 8.65+1.39 8.07+0.48 8.23+0.64 7.33+0.85 6.49+0.63

rather large. This is due to poor statistical convergence of the
sign-changing correlator K(r) which really represents small
differences of large values. It is well known (see, for ex-
ample, Champagne et al. [9]) that measurement of a fifth
order moment with, say, 5% accuracy requires a sampling
time of about 107 integral time scales. For the atmospheric
measurements this corresponds to a sampling time about
10* h, which is completely unrealistic. The present time se-
ries have a sampling time about 1 h [7]. For this reason the
large scatter is not surprising.
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FIG. 1. The nondimensional correlator F(r). (a) The atmo-
spheric data, e=€,: ¢, ASL2; [, ASL3; A, ASLS5; O, ASLS6. (b)
The wind tunnel data: A, ML; O, RC. Open symbols, € = £; solid
symbols, e=¢&,.

It is seen in Fig. 1(b) that K;(r) has the same functional
behavior for both £; and &, . This result is expected because
K(r) is mainly defined by the large values of £. As was
pointed out by Gibson and Masiello [10] (for more results
see also Praskovsky [11]), the large values of & are well
represented by the surrogate £ .

It follows from Eq. (1) that F(r) should be constant for
separations r in the inertial range. In spite of considerable
scatter, one can see in Fig. 1 that each curve has a clearly
pronounced range of » where F{(r) is approximately con-
stant. These ranges for € =&, are indicated in Table I as IR1.
Within these ranges, deviations of F;(r) from a constant
value can be attributed to measurement uncertainty. The
mean values ¢;=F; and the standard deviations o; were
estimated by averaging F{(r) over these ranges, and the re-
sults are listed in Table I.

The measured values of the correlator K,(r) are presented
in Fig. 2 as

Fo(r)=— Kz(sr) A

g, r

The scale A was estimated as 0.157R>?, as will be ex-
plained below. The turbulent kinetic energy was estimated by
using the one-dimensional surrogate q;= %u% For the wind
tunnel data the two-dimensional surrogate §,=3(u3+u3)
was also used. Similar to F(r), measured values of F,(r)
reveal a considerable scatter. One can also see that results for
g, and g, are qualitatively similar. In accordance with Eq.
(1), the values of F,(r) should be constant in the inertial
range. For each curve in Fig. 2 one can find an extended
range of r where F,(r) is approximately constant, and these
ranges for g=g; are indicated in Table I as IR2. The mean
values c,=F, and the standard deviations o, obtained by
averaging F,(r) over these ranges are listed in Table L.
Consider the choice of the external turbulence scale A. It
is commonly assumed that A is equal to the turbulence inte-
gral scale, which is well represented by the one-dimensional
longitudinal scale L. This assumption works quite well in
free flows where there are no large deviations from isotropy
even at large scales. However, this is not the case near the
flow boundaries, e.g., in the near-wall region of a boundary
layer where eddies are strongly expanded in the direction of
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FIG. 2. The nondimensional correlator F,(r). (a) The atmo-
spheric data, g=g,: ¢, ASL2; (J, ASL3; A, ASLS5; O, ASL6. (b)
The wind tunnel data: A, ML; O, RC. Open symbols, g= g,; solid
symbols, g=¢q,.

a mean flow. In particular, in the present atmospheric mea-
surements L, varies from about 40 to 100 m (see Table I).
On the other hand, the integral scale in the vertical direction
cannot be larger than the height of the measurements which
was 7 m. It follows from these considerations that L; may
not be an adequate measure of the external turbulence scale
A. When the present measurements of K,(r) were non-
dimensionalized by L; instead of A, i.e., the value
F%(r)=(L{/A)Fy(r) was estimated, then F3 were found to
be strongly (and nonsystematically) different for different
time series. This variation was assumed to be due to variabil-
ity of the ratio LR, 32/ 5. One can see in Table I that this

dence on the flow geometry is seen, i.e., ¢; and c, for the
three analyzed flows (ML, RC, and ASL) seem to depend on
R, in the same way. It is also seen that both ¢; and c,
weakly decrease as R, increases. Taking into account a rela-
tively poor measurement accuracy, we do not think that the
present results can provide any definite relation for ¢{(R)) or
c,(R)). At this stage of study it seems reasonable to assume
that both ¢;~2.5 and c¢,~7.5 are constants for all analyzed
time series. Note that ¢, depends linearly on the external
scale A, which in the present work was chosen to be
0.157R3>.
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